

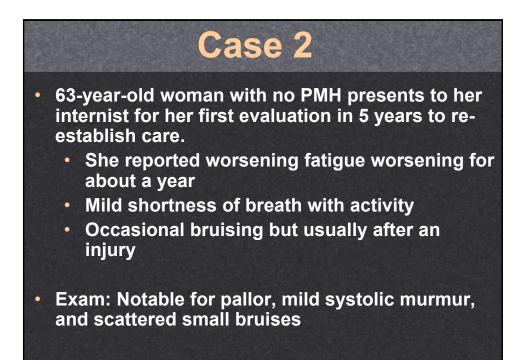
Case continued

Exam findings:

- Dentures in place
- Severe sensory and motor neuropathy

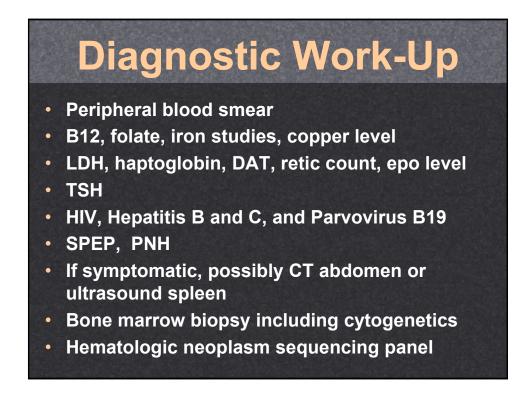
 She mentioned that she had recently seen on ABC news a report of Zinc toxicity from Poligrip.

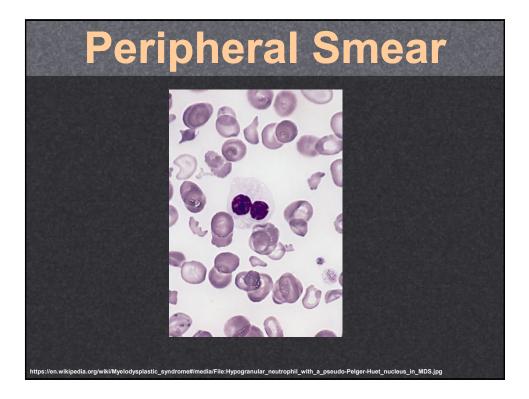
 She stopped using the product about a month prior, but had used it for 4-5 years.

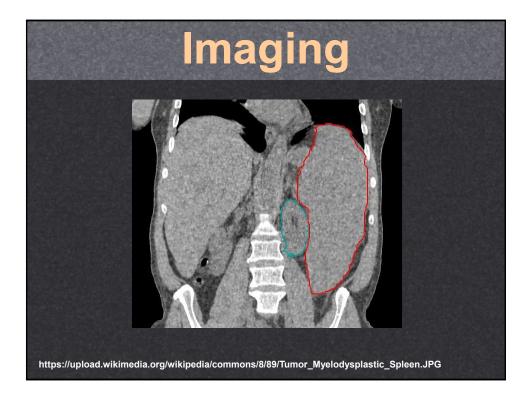

Case continued

Case continued

- Her Zinc level was high at 2800ug/L in the urine with Zn/Cr ratio of 5456/ug/g creat (nl 100-900)
- Serum copper level is undetectable
- Copper replacement given, CBC normal within 3 weeks.

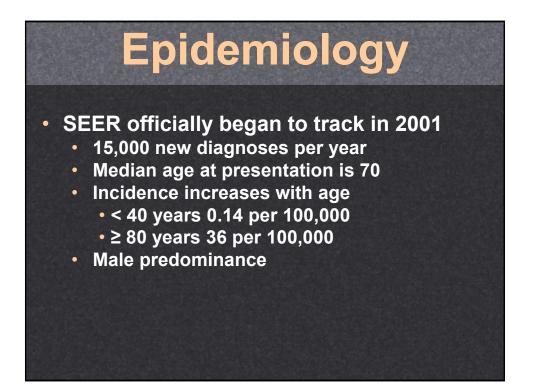

Differential Diagnosis: Non-Hematologic Causes of Cytopenia

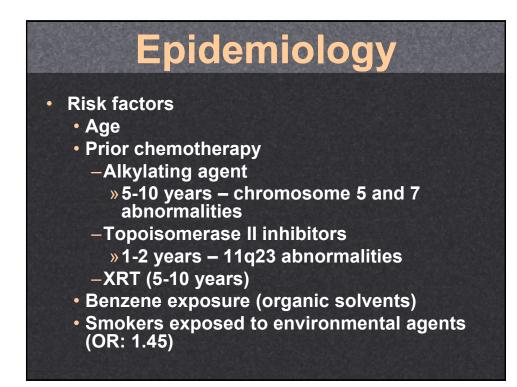

- Reactive/Temporary Cause
 - Drug Effects
 - Infection (viral, bacterial, etc.)
- Nutritional Deficiencies
 - B12, folate, copper, iron
 - Alcoholism, liver dysfunction
- Autoimmune Disorders
 - Hypothyroidism
 - Rheumatologic Disorders

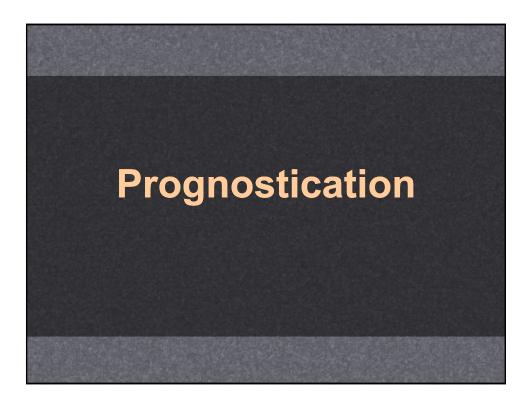


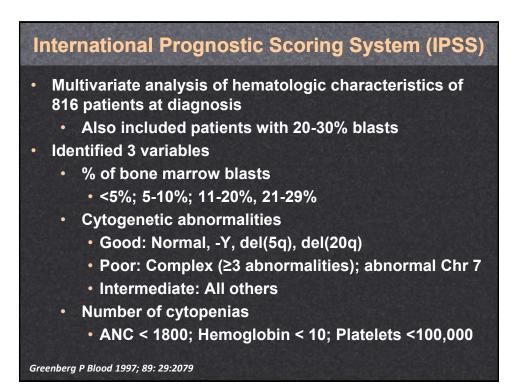
Laboi	ratory Results:
Hgb	9.2g/dL
MCV	101
WBC	2.3
ANC	690/uL
Blasts	None
Platelet	64,000/uL

Laborat	ory Results:
Hgb	9.2g/dL
MCV	101
WBC	2.3
ANC	690/uL
Blasts	None
Platelet	64,000/uL
B12	810
Folate	20
Erythropoietin	254 (normal 2-20)

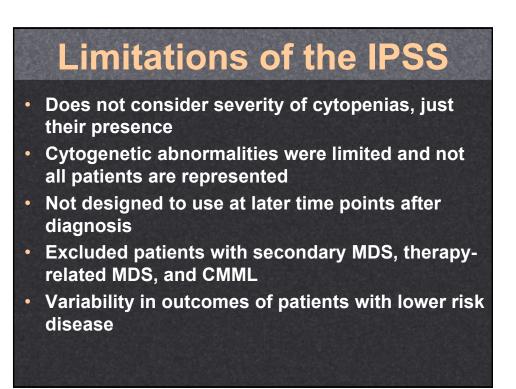


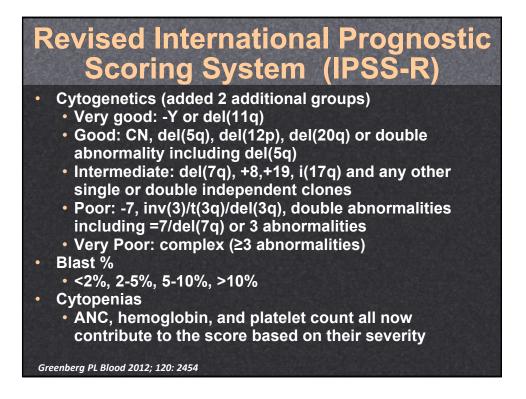


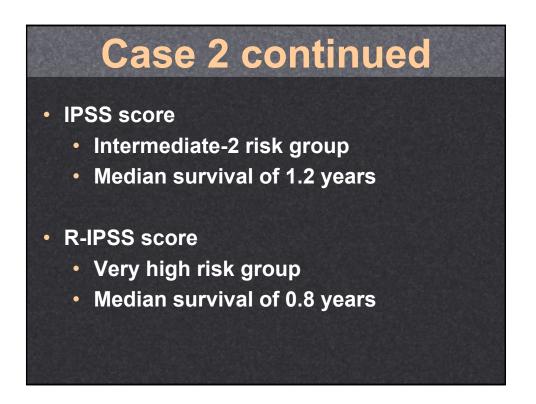

Case continued


- Bone marrow biopsy returns consistent with MDS with 8% blasts.
- Cytogenetics show a complex karyotype with trisomy 8, deletion 7, and deletion of 20q

 Sequencing panel reveals mutations of ASXL1 and TET2



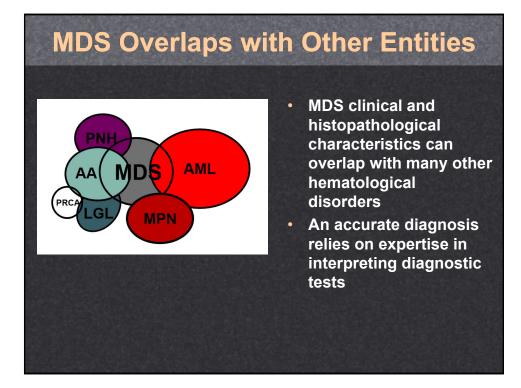




Risk Group	Score	Median Survival (years)	Median Time to AML evolution (years)
Low	0	5.7	9.4
Intermediate-1	0.5-1.0	3.5	3.3
Intermediate-2	1.5-2.0	1.2	1.1
High	≥2.5	0.4	0.2

Revised International Prognostic Scoring System (IPSS-R)						
	Very Low	Low	Intermediate	High	Very high	
Median Survival (years)	8.8	5.3	3.0	1.6	0.8	
Median time to 25% AML transformation (years)	NR	10.8	3.2	1.4	0.73	
Greenberg PL Blood 2012;	120: 2454					


Summary of Work-Up

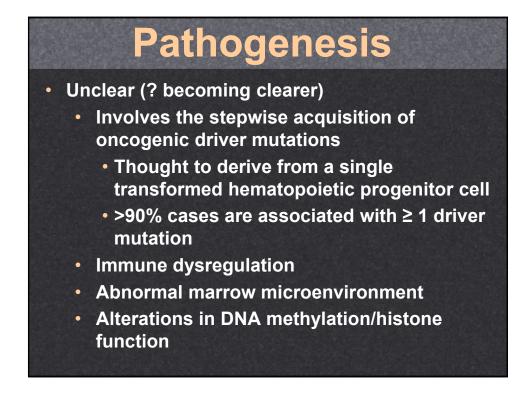

• When to suspect?

- Unexplained cytopenia
- Symptoms may include fatigue, SOB, and bleeding or bruising depending on the cell lines involved
- Initial steps in diagnosis?
 - Comprehensive lab studies
 - Consider abdominal imaging if hepatosplenomegaly suspected
- When to refer to hematology?
 - New cytopenia and/or work-up has not shown source of cytopenia
 - If bone marrow biopsy felt to be indicated

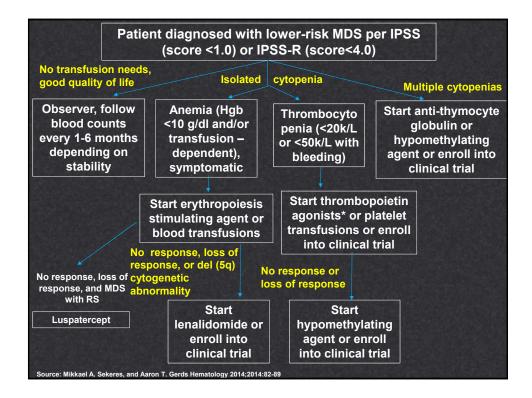
Myelodysplastic Syndromes

Alice Mims, MD, MSCR Assistant Professor of Internal Medicine Department of Internal Medicine Division of Hematology The Ohio State University Wexner Medical Center

Myelodysplastic Syndromes


- Heterogenous group of malignant hematopoietic stem cell disorders
- Characterized by clonal hematopoiesis
- Quantitatively and qualitatively abnormal myeloid differentiation
 - Chronic cytopenias
- Immune dysregulation
- Variable progression to AML

2016 WHO MDS Subtypes


MDS with single lineage dysplasia
MDS with multilineage dysplasia
MDS with Ringed Sideroblasts
MDS with RS with single lineage dysplasia
MDS-RS with multilineage dysplasia
MDS with isolated del(5q)
MDS with excess blasts
MDS-EB-1
MDS-EB-2
MDS, unclassifiable
With 1% blood blasts
With single lineage dysplasia and pancytopenia
Based on defining cytogenetic abnormality
Refractory cytopenias of childhood
Arber DA Blood 2016: 127:2391-2405

Chromosomal Abnormalities that diagnose MDS in Absence of definitive morphological criteria

Abnormality	Frequency, %
-5 or del(5q)	10-15
-7 or del(7q)	10
i(17q) or t(17p)	2-3
del(12p) or t(12p)	1-2
del(11q)	1-2
– 13 or del(13q)	1-2
del(9q)	1
idic(X)(q13)	1
inv(3)(q21q26.2)	1
t(6;9)(p23;q34)	1
t(3;21)(q26.2;q22.1)	<1
t(1;3)(p36.3;q21.2)	<1
t(11;16)(q23;p13.3)	<1
t(2;11)(p21;q23)	<1

Anemia and Survival

1000 newly diagnosed patients with low and INT-1 risk MDS enrolled in European LeukemiaNet MDS registry (EUMDS)

- 14 countries
- Median age = 74 years Most patients died without disease progression (higher risk/AML) Infectious and cardiovascular
- The mortality rate in transfusion dependent patients was 24% vs 5% in transfusion independent patients
 - Transfusion dependent patients with disease progression had a higher mortality rate than those who were not transfusion dependent at disease progression (66% vs 32%)
 Transfusion dependent patients without disease
- progression and a serum ferritin \geq 1000 µg/L had a higher mortality rate 56% vs 21% (HR 4.79, 95% CI 2.56-8.96) than transfusion independent patients
- The degree of anemia appears to have an impact on OS and leukemia free survival

De Swart ASH Annual Meeting 2012; 120: 3830.

Erythropoietin Stimulating Agents

Erythropoietin induces globin gene expression and promotes late erythroid differentiation

Who responds?

- Patients with lower risk MDS without ring sideroblasts • had a higher probability of response
- Higher response rates in patients without a prior transfusion need
- Higher response in those with pre-treatment serum epo levels < 150-200

Serum Epo	Points	PRBCs/month	Points	Total Score	Likelihood of response
< 100	+2	< 2 Units	+2	> +1	74%
100-500	+1	> 2 Units	-2	-1 to +1	23%
> 500	-3			< -1	7%

Predictive model for response to erythropoietin and GCSF Based on serum epo level and RBC transfusion requirement

Erythropoietin Stimulating Agents

- Response can take 8 weeks or more
- Duration of response and time to transfusion dependency is longer in patients treated within 6 months of diagnosis vs after 6 months
- Erythroid response to darbepoietin 56% at 24 weeks in lower risk MDS patients

Iron Overload

- Begins prior to patients becoming red cell transfusion dependent
 - Ineffective erythropoiesis suppresses hepcidin production in the liver → unrestrained intestinal iron uptake due to lack of inhibition of ferroportin (iron channel on basolateral surface of enterocytes)
- Iron toxicity may not only depend on the degree of iron accumulation but also on the extent of exposure to non-transferrin bound iron → increased oxidative stress

Malcovati L et al Haematologica 2006; 91: 1588-90

Iron Chelation

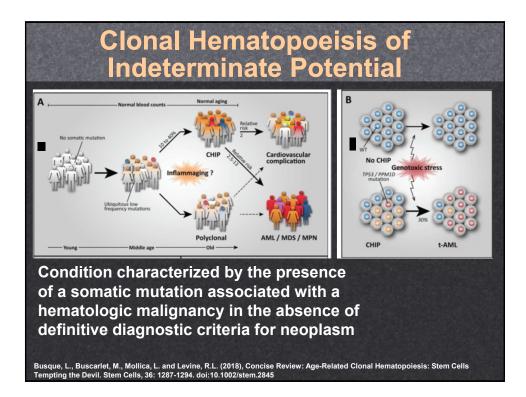
 Above a serum ferritin of 1000 ng/mL there is a dose dependent impact on OS 30% greater risk of death for every 500ng/mL increase in ferritin above 1000 ng/mL

 Recommendations for chelation are mostly based on expert opinion

- Patients with a transfusion history of at least 20 or 25 units of PRBCs and serum ferritin > 1000
- Focus on patients with lower-risk MDS who may have a longer life expectancy and will therefore receive long-term transfusion therapy
- MRI is able to diagnose iron overload

Higher Risk Patients

- Early initiation of hypomethylating agent
 - Azacitidine or decitabine
 - CR rate of approximately 20%
 - 21 months versus 13 months of AML transformation when compared to Best Supportive Care
- Screen for HLA matched donor at diagnosis
 - Nonmyeloablative conditioning given age
 - Eligibility depends on preserved organ
 - function, performance status, etc

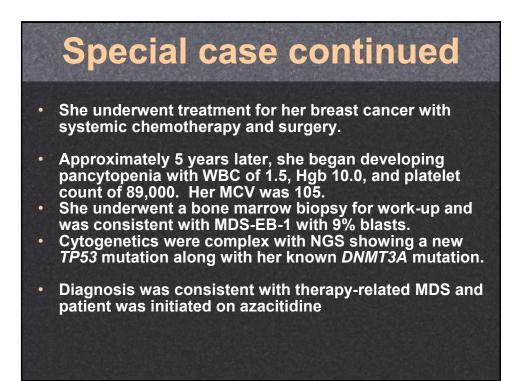

Role of Allogeneic transplantation

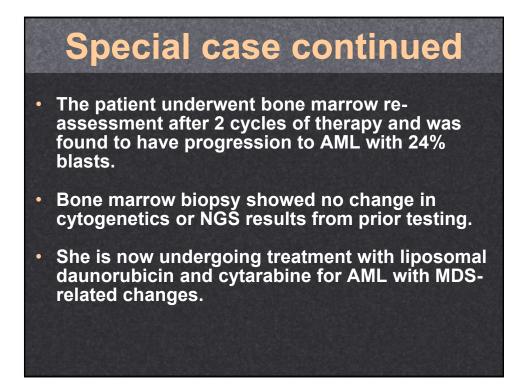
- 3rd most common indication for allogeneic stem cell/bone marrow transplantation
- Cutler et al. developed decision model to understand how treatment decisions affect overall outcome in patients with newly diagnosed MDS
 - Low/Int-1 IPSS patients delay until progression
 - Int-2/High risk IPSS patients early transplantation

Cutler et al. Blood. 2004 104: 579-585

Special Case

- A 52 year old female was found to have a new diagnosis of Stage III breast cancer and due to history of high risk family cancer, she sought genetic counseling.
- She underwent testing which included next generation sequencing of the blood.
- Results showed a DNMT3A mutation and her peripheral blood counts were normal at time of testing
- This result was consistent with Clonal Hematopoiesis of Indeterminate Potential (CHIP)




Idiopathic cytopenias of undetermined significance (ICUS)

- Describes patients in whom MDS is possible but not proven
- Must have relevant cytopenia in one or more lineage *hemoglobin <11 g/dL, neutrophil count <1500, platelet count <100,000 that persists for 6 months, cannot be explained by other disease and does not meet diagnostic criteria of MDS
- Patients should be carefully monitored

HP2 Janis - CHIP is more of a condition than a test, so I think this belongs in On Target (do we need to label all slides?)

Harty, Patrick, 5/21/2020

Conclusions

- MDS is a heterogeneous disease
 - Mutational analysis will likely improve our ability to risk stratify patients better and potentially give more targeted therapeutics
- Consideration of ESA therapy in patients with low risk disease with anemia only is reasonable
- Consider lenalidomide in patients with 5q abnormalities
- Consider luspatercept in MDS with Ringed Sideroblasts who are transfusion-dependent and not/lost response to ESA therapy
- 5-azacytidine is the only available hypomethylating agent with a proven survival advantage
- Consider BMT referral in patients with higher risk disease